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For a large class of L1
loc(Rn) kernels we give sharp estimates of the Gibbs

phenomenon, by reducing the problem to the one-dimensional case. � 1999
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1. INTRODUCTION

In 1910, Hermann Weil in two papers [4, 5] studied, among other ques-
tions, the Gibbs phenomenon for two-dimensional spherical harmonics
expansions and, in order to give numerical estimates of the phenomenon,
reduced the problem to the case of a one-dimensional Fourier series.

Recently, L. Colzani and M. Vignati obtained a result in the same spirit
for the Gibbs phenomenon connected to radial kernels for multiple Fourier
integrals in Rn. They considered a domain C in Rn whose boundary �C is
a smooth simple closed surface and a function f: Rn � R defined as

f (P)=�fC(P)
0

if P # C
if P # Rn"C,

where fC=C � R is a continuous function.
Then, if G is a radial L1(Rn) function and G_(x)=(1�_n) G(x�_), they

proved that, with some technical hypotheses on G, the behaviour of G_ V f
in a neighbourhood of a point x0 # �C on the exterior normal & to �C in
x0 is the same as the behaviour of g_ V f� , where f� is the restriction of f to
& and g_ is a suitable one-dimensional kernel closely related to G_ [1,
Theorem 1].

Moreover, they extended the result to Bochner�Riesz means S: of every
order :�0 in R2 and they observed that in Rn (n>2) if :�(n&3)�2 it is
not possible to obtain a similar result.
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By a different technique, the authors in [2] proved that for this kind of
problem and for every L1(Rn) kernel, the study of the Gibbs phenomenon
can be reduced to the one-dimensional case. Moreover, the estimate still
holds when x moves to x0 in any bilateral cone not tangential to �C and
having as axis the normal & to �C passing through x0 .

In this paper, we consider a family of L1
loc(R

n) kernels with some
property of ``conditional integrability'' in Rn, also with the aim of giving an
evaluation of the Gibbs phenomenon for the Bochner�Riesz means S: with
:>(n&3)�2.

We prove that, for this kind of kernels and for smooth functions f,
G_ V f � f uniformly on every compact set of Rn disjoint from �C and that,
under suitable conditions on �C, again the Gibbs phenomenon can be
evaluated as in the L1(Rn) case.

2. THE RESULTS

Let x=(x1 , ..., xn) # Rn, n�1. For convenience, we consider the two
following norms:

|x|=sup
j

|x j |, &x&={ :
n

j=1

x2
j =

1�2

.

Let

Q( y, r)=[x # Rn : |x& y|�r],

1*={x # Rn : x2
1�* :

n

j=2

x2
j = , *�0.

In the sequel, we consider functions G: Rn � R, G # L1
loc(R

n) with the
following property. If 7 is the family of the n-cells

S=[x # Rn : a j<xj<b j ; aj , b j # R, aj<bj , j=1, ..., n],

for every =>0 there exists a0=a0(=) such that

} |S
G(x) dx }<= \S # 7, S & Q(0, a0(=))=<. (2.1)

We preliminary observe that for these G obviously for every S # 7, 0 # S,
there exists limr � � �rS G(x) dx=a<+�, and such limit does not depend
on S. So we can always suppose a=1.
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Moreover, for every s # R there exists

lim
r � � |

|xi |<r, i=2, ..., n
s<x1<r

G(x) dx<+�

which we will denote by �x1>s G(x) dx.
As usual for every _>0 we set

G_(x)=
1
_n G \x

_+ .

Finally, let C/Rn be a compact set with a simple surface as boundary,
smooth enough at least in a neighbourhood of x=0, for which the positive
part of x1 axis is the exterior normal at the origin. Moreover, we suppose
that for every x # �C there exists S # 7, S % x such that the intersections of
C & S with the straight lines parallel to the coordinate axes are connected.

Let / the characteristic function of C. Then we have the following

Theorem 1. Suppose that for some constant c and for every = sufficiently
small the following condition holds,

} |S & (x&_C)
G( y) dy }<c= (2.2)

for every S # 7, S & Q(0, a0(=))=<, x # Rn, _>0. Let f: Rn � R be a func-
tion vanishing in Rn"C and smooth enough in C. Then G_ V f � f as _ � 0
uniformly in every compact subset of Rn"�C. Moreover

G_ V f (t)=/(t)[ f (t)& f (0)]+ f (0) |
x1>t1�_

G(x) dx+'(t, _), (2.3)

where t=(t1 , ..., tn) and '(t, _) � 0 if _ � 0 uniformly with respect to t in a
neighbourhood of t=0 in 1* .

The result can be applied to the following (non-radial) oscillating ker-
nels: G(x)=x jei &x&2�&x&:, x # Rn, :�n. Moreover also suitable partial
derivatives of the Bochner�Riesz kernels fall within the scope of the
theorem.

Remarks. (1) If n=1, formula (2.3) shows that f (0) �x1<t1�_ G(x) dx
and f (0) �x1>t1�_

} G(x) dx give the main part of the oscillation of
G_ V f (t)&f (t) in a neighbourhood of t=0, respectively for t<0 and t>0
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(the Gibbs phenomenon). If n>0, setting g(x1)=�Rn&1G(x1 , ..., xn)dx2 } } } dxn ,
(2.3) shows that

G_ V f (t)& f (t)= g_ V f� (t1)& f (t1)+'(t, _),

where f� is the restriction of f to the x1 axis.

(2) Theorem 1 extends Theorem 2 of [2] to functions G no
necessarily L1(Rn), hence, in order to have the uniform convergence of
'(t, _) to zero, we have to restrict ourselves to a cone 1* . (See the remark
in [2] after Theorem 1).

(3) With the same argument as in the proof of Theorem 3 in [2], it
is possible to obtain a similar result for compactly supported functions not
necessarily vanishing in the complement of C.

With some work, Theorem 1 can be adapted to the radial situation, in
the following way.

Let G: Rn � R be a radial function G(x)=G� (&x&), G # L1
loc(Rn) and sup-

pose that the following limit does exist,

lim
r � � |

r

0
\n&1G� (\) d\=|

� +�

0
\n&1G� (\) d\=

1
mn

, (2.4)

where \=&x& and mn is the surface measure of the unit sphere Bn in Rn.
Then we have

Theorem 2. With the previous hypotheses on G radial, if (2.2) holds and
f: Rn � R is a function vanishing in Rn"C and smooth enough in C, then
G_ V f � f as _ � 0 uniformly in every compact subset of Rn"�C. Moreover

G_ V f (t)=/(t)[ f (t)& f (0)]+mn&1 f (0)

_|
� +�

t1�_
dx1 |

� +�

0
rn&2 G� (- x2

1+r2) dr+'(t, _), (2.5)

where r=[�n
j=2 x2

j ]1�2 and '(t, _) � 0 if _ � 0 uniformly with respect to t
in a neighbourhood of t=0 in 1* .

Remarks. (1) This result is new also for L1(Rn) kernels, but in this
case is an easy corollary of Theorem 2 of [2].

(2) Theorem 2 can be applied, e.g., to the Bochner�Riesz means also
for some indices : below to the critical index :� =(n&1)�2 (Section 6).
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3. A TECHNICAL LEMMA

Let H: Rn � R, H # L1
loc(R

n) such that

&H&=sup
S # 7 } |S

H(x) dx}<+�.

Let K=[x # Rn : 0�x i�r i , ri>0, i=1, ..., n] and let D be a compact sub-
set of K with the property

x� # D O x # D \x: 0�xi�xi , i=1, ..., n.

Lemma 1. Let f: Rn � R, f # C(n)(D) vanishing in Rn"D. Suppose that
for some constant c

} |S & (x&_D)
H( y) dy }<c &H& (3.1)

for every S # 7, x # Rn, _>0. Then there exists a constant M=M( f ) such
that for every t # Rn and for every _>0 we have

|H_ V f (t)|�cM &H&. (3.2)

Proof. Preliminary we observe that if for every x=(x1 , ..., xn) # D

f (x)=|
x1

0
} } } |

xj

0
.( y1 , ..., yj) dy1 , ..., dyj

with 1� j�n and . # L1(R j), then

|H_ V f (t)|�c &.&L1(R j) &H&. (3.3)

Indeed

H_ V f (t)=
1
_n |

Rn
H \x

_+ f (t&x) dx

=
1
_n |

D
f (x) H \t&x

_ + dx

=
1
_n |

D
dx |

E(x)
.( y) H \t&x

_ + dy,

where E(x)=[ y # R j : 0� yi�xi , i=1, ..., j].
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Then, changing variables we obtain

H_ V f (t)=|
D & R j

.( y) dy |
0( y)

H(x) dx,

where 0( y)=[x # (t&D)�_ : (t&( yi+ri))�_�xi�(ti& yi)�_ (i=1, ..., j)
and (t&rj)�_�xi�t�_ (i= j+1, ..., n)].

This proves (3.3) by (3.1).
Now we prove the lemma by induction on the number of the effective

variables of f.
If f (x)= f (0, ..., 0, xj , 0, ..., 0, ) we have

f (x)=|
xj

0
f $xj

(0, ..., 0, y j , 0, ..., 0) dyj+ f (0, ..., 0)

and the lemma in this case follows by (3.3).
If f effectively depends on n>1 variables, an easy computation shows

that

f (x1 , ..., xn)= :
n

j=1
|

x1

0
} } } |

xj

0
f ( j)

x1, ..., xj
( y1 , ..., yj , 0, xj+2 , ..., xn)

_dy1 , ..., dyj+ f (0, x2 , ..., xn)

=|
x1

0
} } } |

xn

0
f (n)

x1, ..., xn
( y1 , ..., yn) dy1 , ..., dyn

+ :
n

j=1

Fj (x1 , ..., xj , 0, x j+2 , ..., xn),

where Fj # C (n)(D). Then the result follows applying (3.3) to the first term
and the hypothesis of induction to the functions Fj , which effectively
depend on n&1 variables.

Remark. If the hypotheses of the lemma hold in a domain D$ obtained
from D by translations and symmetries with respect to the coordinate
hyperplanes, then (3.2) still holds; then, of course, the same is true for a
compact set which is a finite union of such domains D$.

4. PROOF OF THEOREM 1

In order to prove the theorem we have to split the kernel in two parts.
The first one is compactly supported and its behaviour is controlled in the
cone 1* by the Theorem 2 of [2]. The behaviour of the remaining part is
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controlled by using the hypothesis of ``conditional integrability'' of the
kernel.

Let a�a0(=), /a the characteristic function of Q(0, a) and

G� =G� (a)=G } /a ; H=H (a)=G&G� .

Obviously, G� # L1(Rn) and

G_ V f (t)=G� _ V f (t)+H_ V f (t).

In every compact K/Rn"�C it is well known that

|G� _ V f (t)& f (t)|<=

if _<_0(=). Moreover, the lemma gives

|H_ V f (t)|<cM=.

Then G_ V f& f � 0 uniformly with respect to _ in K.
Now we consider a neighbourhood of t=0. We have

G_ V f (t)&/(t)[ f (t)& f (0)]& f (0) |
x1>t1�_

G(x) dx

=H_ V f (t)+{G� _ V f (t)&/(t)( f (t)& f (0))

& f (0) |
x1>t1�_

G� (x) dx=& f (0) |
x1>t1�_

H(x) dx

=I1+I2+I3 .

By Lemma and (2.2)

|I1 |=|H_ V f (t)|�cM=,

where M depends only on f.
By the hypotheses on G, if a�a0(=)

} |x1>t�_
H(x) dx }<=;

then

|I3 |�| f (0)| } =.
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Finally, applying Theorem 2 in [2] to the function G� _(�Rn G� _(x) dx)&1 we
obtain that if a�a1(=, a0),

|I2 |=|/(t)( f (t)& f (0))| } } 1&|
Rn

G� _(x) dx }+'a(t, _)

�=+'a(t, _),

where 'a(t, _) � 0 when _ � 0 uniformly with respect to t in a
neighbourhood of t=0 in 1* .

Then, if a�max(a0 , a1)=a� (=), we have

|I1+I2+I3 |�[cM+| f (0)|+1] =+'a(t, _)

and the theorem follows.

5. PROOF OF THEOREM 2

Theorem 2 is a consequence of the following propositions, whenever the
radial function G always satisfies the hypotheses of Theorem 2.

Proposition 1. G satisfies (2.1).

Indeed let a0=a0(=) such that for every a0�\1<\2<+� we have

} |
\2

\1

\n&1G� (\) d\ }<=�mn . (5.1)

If S # 7, S & Q(0, a0)=< we have

|
S

G(x) dx=|
�Bn

d_ |
\2(_)

\1(_)
\n&1G� (\) d\,

where \1(_), \2(_) are respectively the minimum and the maximum
modulus of the points in the intersection of S with the ray from the origin
through the point _ on the unit sphere. Then (5.1) gives |�S G(x) dx|<=.

Proposition 2. If S # 7 and 0 # S

lim
r � +� |

rS
G(x) dx= lim

r � +� |
&x&<r

G(x) dx

=mn |
� +�

0
\n&1G� (\) d\=1. (5.2)

The proof follows as in Proposition 1.
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Proposition 3. For every x1 # R there exists

I(x1)=mn&1 |
� +�

0
\n&2G� (- x2

1+\2) d\ (5.3)

and |I(x1)|<+�.

Indeed G(x1 , } ) is a radial function L1
loc(R

n&1) for every x1 # R. If
0<r0�r<\, if - x2

1+\2=t and F(t)=� t
r0

un&1G� (u) du we have

|
s

r
\n&2G� (- x2

1+\2) d\=|
- s2+x2

1

- r2+x2
1

tn&1 (t2&x2
1)(n&3)�2

tn&2 G� (t) dt

=_F(t)
(t2&x2

1) (n&3)�2

tn&2 &
- s2+x2

1

- r2+x2
1

&|
- s2+x2

1

- r2+x2
1

F(t) }
d
dt

(t2&x2
1) (n&3)�2

tn&2 dt;

then if r�r0(=) for every x1 # R,

} |
s

r
\n&2G� (- x2

1+\2) d\ }�4=
r

(5.4)

and Proposition 3 follows.

Proposition 4. For every x1 # R

lim
r � +� |

i=2, ..., n
|xi |�r

G(x1 , ..., xn) dx2 , ..., dxn=mn&1I(x1).

Indeed, by Proposition 3, G(x1 , } ) satisfies in Rn&1 the hypotheses of
Propositions 1 and 2.

Proposition 5. I # L1
loc(R).

Indeed for every r>0 we have

I(x1)=mn&1 |
r

0
\n&2G� (- x2

1+\2) d\

+mn&1 |
� +�

r
\n&2G� (- x2

1+\2) d\

=I (r)
1 (x1)+I (r)

2 (x1).
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Obviously I (r)
1 # L1

loc(R) for every r and I (r)
2 is bounded by (5.4).

Proposition 6. For every s # R we have

|
� +�

s
I(x1) dx1=|

x1>s
G(x) dx. (5.5)

By Proposition 1 the second term of (5.5) is well defined and finite. For
every r>s we have

} |
r

s
dx1 |

i=2, ..., n
|xi |�r

G(x) dx2 , ..., dxn&|
r

s
I(x1) dx1 }

� } |
r

s
dx1 {|

i=2, ..., n
|xi |�r

G(x) dx2 , ..., dxn

&|&(x2, ..., xn)&�r
G(x) dx2 , ..., dxn=}

+ } |
r

s
dx1 {|&(x2, ..., xn)&�r

G(x) dx2 , ..., dxn&I(x1)=}
=J1+J2 .

Hence

J1=|
E(s, r)

\n&1G� (\) d\,

where E(s, r)=[x # Rn : s<x1<r, &(x2 , ..., xn)&>r and |(x2 , ..., xn)|<r].
If r�r0(=) we have (as in Proposition 1)

|J1 |�mn=. (5.6)

By (5.4)

} |
v

s
dx1 |

� +�

r
\n&2G� (- x2

1+\2) d\ }�4=
r

(v&s).

Since

|J2 |= } |
r

s
dx1 |

� +�

r
\n&2G� (- x2

1+\2) d\ }
we have |J2 |=�(4=�r)(r&s)<4=. This inequality and (5.6) prove (5.5).
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Now it is easy to see that the radial function G satisfies all hypotheses
of Theorem 1. Then Theorem 2 follows by (5.5).

6. THE BOCHNER�RIESZ CASE

We recall that in Rn, the Bochner�Riesz means of order :>0 of a func-
tion . are defined via Fourier transform in the following way,

(S :
_ V .)7 (t)=(1&_2 &t&2):

+ .̂(t)

and it turns out that

S:(x)=S :
1(x)=?&:1(:+1) &x&&:&(n�2) J:+(n�2)(2? &x&) (6.1)

(see [3]) where J; is the Bessel function of index ;.
From the classical properties of Bessel functions it is easy to see that the

radial function S: satisfies the hypothesis (2.1) for :>(n&3)�2.
In this case Theorem 2 can be reformulated in the following form (see

[1] for n=2).

Theorem 3. If the boundary of C is a smooth simple surface and if
f: Rn � R is a function vanishing in Rn"C and smooth enough in C and
:>(n&3)�2, then S :

_ V f � f as _ � 0 uniformly in every compact subset of
Rn"�C. Moreover

S :
_ V f (t)=/(t)[ f (t)& f (0)]+?&:1(:+1) mn&1 f (0)

_|
� +�

t1�_
x&:&1�2

1 J:+1�2(2? |x1 | ) dx1+'(t, _), (6.2)

where '(t, _) � 0 if _ � 0 uniformly with respect to t in a neighbourhood of
t=0 in 1* .

Proof. If :>(n&1)�2 this can be seen straightforwardly (see [2]). If
(n&1)�2�:>(n&3)�2, preliminarly we observe that (2.2) is satisfied and
the Theorem 2 holds. Now let us consider

I1(x1)=mn&1 |
� +�

0
rn&2S :(- x2

1+r2) dr.

By (5.3), I1(x1) is bounded and its Fourier transform is a tempered dis-
tribution.

If we prove that for every t1 # R S� :(t1 , 0, ..., 0)=I� 1(t1), the theorem will
follow from (6.1). Then we have to compare S� : and I� 1 .

154 DE MICHELE AND ROUX



Let .: R � R+ a spline function of order k (k sufficiently large), even,
compactly supported, .(1)=1 if |x|<1�4;

Z(x1 , ..., xn)=.(x1) } .(- x2
2+ } } } +x2

n )=.(x1) } .(r)

and Z_(x)=(1�_n) Z(x�_).

(S� : V Z� _)(t1 , 0, ..., 0)&(I� 1 V .̂_)(t1)

=|
R

eit1x1.(_x1) |
R

rn&2S:(- x2
1+r2)(.(_r)&1) dr

=2?&: 1(:+1) |
R

eit1x1.(_x1) |
r>1�4_

rn&2(- x2
1+r2)&:&n�2

_J:+n�2(2? - x2
1+r2)(.(_r)&1) dr

=2 - 2 ?&:+1�21(:+1) |
R

eit1r1.(_x1) |
r>1�4_

rn&2

_(- x2
1+r2)&:&((n+1)�2) cos \- x2

1+r2&
?
2

:&
?
4

(n+1)+
_(.(_r)&1) dr+o(_).

First we remark that an easy evaluation of the distance d of two con-
secutive zeros of cos(- x2

1+r2&(?�2) :&(?�4)(n+1) greater than r is

d�
?2+2? - x2

1+r2

2r
.

Since the function

8_, x1
(r)=rn&2(- x2

1+r2)&:&(n+1)�2(.(_r)&1)

has a bounded number of zeros with respect to _ and x1 , we have

} |r>1�4_
8_, x1

(r) cos \- x2
1+r2&

?
2

:&
?
4

(n+1)+ dr }
�c_(1�2)(5+2:&n) _?2+2? - _2x2

1+1

(- _2x2
1+1):+((n+1)�2)

.

Then, changing variables, we obtain

(S� : V Z� _)(t1 , 0, ..., 0)&(I� 1 V .̂_)(t1))�c$_ (1�2)(3+2:&n), (6.3)

where c$ is independent of x1 and _.
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Because I1 is bounded, by Lebesgue theorem it is easy to see that
I� 1 V .̂_ � I� 1 in the weak*-topology of tempered distributions.

On the other hand, because Z� is in L1 we have S :* V Z� _ � S :* uniformly
in Rn when _ � 0.

Then, by (6.3), I� 1(t1)=S� :(t1 , 0, ..., 0) for every t # R and the theorem
follows.
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